首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   21篇
  2023年   2篇
  2022年   3篇
  2021年   9篇
  2020年   5篇
  2019年   7篇
  2018年   8篇
  2017年   6篇
  2016年   8篇
  2015年   16篇
  2014年   5篇
  2013年   19篇
  2012年   19篇
  2011年   14篇
  2010年   13篇
  2009年   13篇
  2008年   12篇
  2007年   16篇
  2006年   14篇
  2005年   8篇
  2004年   7篇
  2003年   4篇
  2002年   9篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1974年   1篇
排序方式: 共有240条查询结果,搜索用时 562 毫秒
31.
32.
Higher plant hydraulic conductivity (K plant) is vital for plant growth, especially under PEG-induced water deficit stress (PEG-IWDS). Leaf venation architecture is a key determinant of leaf hydraulic conductivity (K leaf) and K leaf is a major component of K plant across different plant species. However, there is little information about (1) varietal difference in leaf vein development in cereal crops, such as rice plants; (2) the effects of PEG-IWDS on leaf vein development; (3) the coordination between leaf venation architecture and K plant as well as K leaf under PEG-IWDS. In the present study, widely cultivated eight rice cultivars were grown hydroponically under well-watered condition (WWC) and PEG-IWDS, simulated by adding 15 % (w/v) PEG6000. Leaf venation architecture, including total longitudinal leaf vein number, leaf vein numbers per unit width (LVNW), vein thickness and leaf mass per area, as well as K plant and K leaf were measured to address above-mentioned questions. The results showed that leaf venation architecture exhibited significant varietal differences and PEG-IWDS significantly increased LVNW while decreased vein thickness. PEG-IWDS suppressed both K plant and K leaf but the decrease was much higher in K plant than K leaf. There was a significant and positive correlation observed between LVNW and K leaf under both WWC and PEG-IWDS but the correlation between LVNW and K plant was only significant under WWC. K leaf was significantly and positively correlated with K plant under WWC but not under PEG-IWDS. It is concluded that K leaf is a major determinant for K plant under WWC but not under PEG-IWDS; therefore, breeding or selecting rice cultivars with high LVNW can improve shoot water supplement under WWC but not under PEG-IWDS condition.  相似文献   
33.
A two years field study was conducted to explain the effect of Zn and lime application on morphological characteristics, rice yield and yield components, and more broadly, grains bio-fortification (Zn and protein content (CP), and amino acid profiles). The lime and Zn interaction increased grains and straw yield more than two times (6.64 ton ha?1) compared to the control (3.20 ton ha?1). The maximum increase in the Zn content of grain, white rice and bran was obtained about 30% in whole grain, 42% in bran and 56% in white rice. Furthermore, CP increased by about 8% in bran, 12.3% in whole grain, and 27% in white rice compared to control. Also, the Zn and lime application and their interaction were significantly increased the amino acids, especially essential parts.  相似文献   
34.
The Drosophila gene hclB encodes a histamine-gated chloride channel, which can be activated by the neurotoxin ivermectin when expressed in vitro. We have identified two novel hclB mutants, carrying either a missense mutation (P293S, allele hclB T1 ) or a putative null mutation (W111*, allele hclB T2 ), as well as a novel splice form of the gene. In survival studies, hclB T1 mutants were more sensitive to ivermectin than wild-type, whereas hclB T2 were more resistant. Electroretinogram recordings from the two mutants exhibited enlarged peak amplitudes of the transient components, indicating altered synaptic transmission between retinal photoneurons and their target cells. Ivermectin treatment severely affected or completely suppressed these transient components in an allele-specific manner. This suppression of synaptic signals by ivermectin was dose-dependent. These results identify HCLB as an important in vivo target for ivermectin in Drosophila melanogaster, and demonstrate the involvement of this protein in the visual pathway. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   
35.
Water deficit is a serious environmental stress and the major constraint to rice productivity. Losses in rice yield due to water shortage probably exceed losses from all other causes combined and the extent of the yield loss depends on both the severity and duration of the water stress. Drought affects rice at morphological, physiological, and molecular levels such as delayed flowering, reduced dry matter accumulation and partitioning, and decreased photosynthetic capacity as a result of stomatal closure, metabolic limitations, and oxidative damage to chloroplasts. Small-statured rice plants with reduced leaf area and short growth duration are better able to tolerate drought stress, although the mechanisms are not yet fully understood. Increased water uptake by developing larger and deeper root systems, and the accumulation of osmolytes and osmoprotectants are other important mechanisms for drought resistance. Drought resistance in rice has been improved by using plant growth regulators and osmoprotectants. In addition, several enzymes have been found that act as antioxidants. Silicon has also improved drought resistance in rice by silicification of the root endodermis and improving water uptake. Seed priming improves germination and crop stand establishment under drought. Rice plants expressing HVA1, LEA proteins, MAP kinase, DREB and endo-1, 3-glucanase are better able to withstand drought stress. Polyamines and several enzymes act as antioxidants and reduce adverse effects of drought stress in rice. Drought resistance can be managed by developing and selecting drought-tolerant genotypes. Rice breeding and screening may be based on growth duration, root system, photosynthesis traits, stomatal frequency, specific leaf weight, leaf water potential, and yield in target environments. This review discusses recent developments in integrated approaches, such as genetics, breeding and resource management to increase rice yield and reduce water demand for rice production.  相似文献   
36.
Transition of bacteria to cell wall deficient L-forms in response to stress factors has been assumed as a potential mechanism for survival of microbes under unfavorable conditions. In this article, we provide evidence of paradoxal survival through L-form conversion of E. coli high cell density population after lethal treatments (boiling or autoclaving). Light and transmission electron microscopy demonstrated conversion from classical rod to polymorphic L-form shape morphology and atypical growths of E. coli. Microcrystal formations observed at this stage were interpreted as being closely linked to the processes of L-form conversion and probably involved in the general phenomenon of protection against lethal environment. Identity of the morphologically modified L-forms as E. coli was verified by species specific DNA-based test. Our study might contribute to a better understanding of the L-form phenomenon and its importance for bacterial survival, as well as provoke reexamination of the traditional view of killing strategies against bacteria.  相似文献   
37.
38.
High temperature strongly hampers the plant growth particularly at early growth stages. In this study, changes in some physiological and anatomical characteristics and possibility of mitigating the adversities of heat stress by soaking sugarcane nodal buds in 20 mM proline and glycinebetaine (GB) solutions have been explored. Heat stress reduced the rate of bud sprouting nonetheless soaking the setts in proline followed by GB was beneficial. In addition, heat stress reduced the bud fresh and dry weights, generated H2O2, reduced the tissue levels of K+ and Ca2+, while increased the osmolytes synthesis in a time course manner. Heat stress also delayed the emergence and expansion of new bud leaves, by restricting the number and area of mesophyll cells. It also caused poor and aberrant development and diffused appearance of mesophyll cells and vascular bundles in the bud leaves. However, soaking of buds in proline and GB solutions substantially reduced the H2O2 production, improved the accumulation of soluble sugars and protected the developing tissues from heat stress effects; although proline was more effective than GB. Correlations of various attributes indicated that soaking in GB and proline restricted the H2O2 generation, improved K+ and Ca2+ contents, and increased the concentrations of free proline, GB and soluble sugars eventually improving the heat tolerance of buds. Cost-benefit analysis showed that, considering increase in sprouting of buds, soaking in 20 mM solution of both osmoprotectants is economical.  相似文献   
39.
40.
The effector protein AvrP is secreted by the flax rust fungal pathogen (Melampsora lini) and recognized specifically by the flax (Linum usitatissimum) P disease resistance protein, leading to effector‐triggered immunity. To investigate the biological function of this effector and the mechanisms of specific recognition by the P resistance protein, we determined the crystal structure of AvrP. The structure reveals an elongated zinc‐finger‐like structure with a novel interleaved zinc‐binding topology. The residues responsible for zinc binding are conserved in AvrP effector variants and mutations of these motifs result in a loss of P‐mediated recognition. The first zinc‐coordinating region of the structure displays a positively charged surface and shows some limited similarities to nucleic acid‐binding and chromatin‐associated proteins. We show that the majority of the AvrP protein accumulates in the plant nucleus when transiently expressed in Nicotiana benthamiana cells, suggesting a nuclear pathogenic function. Polymorphic residues in AvrP and its allelic variants map to the protein surface and could be associated with differences in recognition specificity. Several point mutations of residues on the non‐conserved surface patch result in a loss of recognition by P, suggesting that these residues are required for recognition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号